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Representations of the q-deformed algebra Ui(so4) 

I I Kachurik and A U Klimyk 
Bogoliubov Instihlte for Theoretical Physics. Kiev 252143, U!uaine 

Received 13 July 1994 

Abstract hducible finite-dimensional representations of the gdeformed algebra U;(soa), 
which is a generalization of Fairlie’s algebra U;(SOJ), are studied. These representations T,, 
are given by two integral or half-integral numbers r and s such that r > Is1 > 0. Spectra and 
eigenvwtors offthe operator T , , ( I d  are given, where I43 is one of the generators of U ; ( S O ~ ) .  By 
means of this result, explicit expressions for all generating operators T,JIj,i-l), i = 2 , 3 , 4 ,  with 
respgt to the basis Ix. m )  corresponding to restriction onto the subalgebra U;(s%) +U;(so,) are 
evaluated By analytical continuation, infinite-dimensional representations of the ‘non-compact’ 
q-deformed algebra U;(sol , l )  are found. They are characterized by hvo mmplex numbers. 

1. Introduction 

Quantum groups and algebras are of great importance for applications in quantum integrable 
systems, in quantum field theory and in statistical physics. There are many results on the 
applications of the simplest quantum groups for phenomenological descriptions in particle 
theory (Gavrilik 1994), in nuclear physics (Raychev et al 1990) etc. Quantum groups and 
algebras are applied mainly by means of their representations. Therefore, it is necessary to 
have a well developed theory of their representations. 

In the classical case, the embedding SO(3) c U(3) (and the more general embedding 
SO(n) c U ( n ) )  is of great importance for a group-theoretical approach to some physical 
problems. In the framework of Drinfeld-Jimbo quantum groups, we cannot construct the 
corresponding embeddings. In this framework, we can neither construct the quantum 
algebras U,(SO,J) nor introduce Gel’fand-Tsetlin bases for representation spaces for 
Uq(son). To remove these defects, the new q-deformation of the universal enveloping 
algebra U(so(n. C)) (and its ‘compact’ real form UJ(so,)) was defined by Gavrilik et a! 
(1990) (see also Gavrilik and Klimyk 1991, 1994) and we denote it by Ui(so(n, C)). This 
q-deformed algebra allows the embedding Ui(so(n - 1, C)) c U;(so(n, C)) and, therefore, 
we can introduce Gel’fand-Tsetlin bases. It was shown by Noumi et al (1994) that this 
algebra can be embedded into U,(sl(n, C)). This  last fact makes the algebra U;(so,) very 
attractive since the pairs Ui(son) c Uq(um) can be of great physical importance. Of course, 
for applications, we must have irreducible representations of U;(so,) or, at least, the simplest 
of them. It was discovered later that the algebra U;(so(n, C)), defined by Gavrilik et al 
(1990). at n = 3, coincides with the algebra defined by Fairlie (1990). Representations 
of U;(s03) were studied by Fairlie (1990). Representations of Ui(s04) with respect to the 
Gel’fand-Tsetlin basis were given by Gavrilik (1993). Here, we continue the study into 
these representations. 

The algebra Ui(so4) has three generators ZZ~, 132 and 143. Its irreducible representations 
T,, are given by two integral or half-integral numbers r and s such that r 2 Is1 0. We find 
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the spectra and eigenvectors of the operators T,$(Z43). Eigenvectors are expressed by means 
of q-Racah polynomials (Gasper and Rahman 1991). By making use of the eigenvectors of 
Z‘rs(143), we derive formulae for the operators Tr8&) and T,,(143) in the basis corresponding 
to the reshiction of TrS on the subalgehra U;(so2) + Ui(so2). This basis differs from the 
Gel’fand-Tsetli basis. We have coefficients (overlap functions) connecting these two bases. 
Finally, using the explicit form of the operator Trs(132), with respect to the U;(so~)+U;(so~) 
basis, and by analytical continuation in parameters determining representations, we find 
infinite-dimensional representations of the ‘non-compact’ q-deformed algebra U;(so2,2). 
They are given by two complex numbers. Throughout this paper, we assume that q is not 
a root of unity. 

I I Kachurik and A U Klimyk 

2. A generalization of Fairlie’s algebra 

Drinfeld (1985) and Jimbo (1985) defined q-deformed (quantum) algebras U,@) for all 
simple complex Lie algebras g by means of Cartan subalgebras and root subspaces. 
However, these approaches do not give a satisfactory presentation of the quantum 
algebra U,(so(n, C)) from the point of view of some problems of quantum physics and 
representation theory. In fact, they admit the inclusion 

U&o(n, C)) 2 U,(so(n - 2. e)) 

and do not admit 

U,(so(n, C)) 2 U,(so(n - 1, C)). (1) 

This is why we cannot construct the quantum algebra UQ(son,l) in the framework of these 
approaches or Gel’fand-Tsetlin bases in the representation spaces, In order to obtain 
inclusion (1). we proposed (Gavrilik and Klimyk 1991) another q-deformation of the 
classical universal enveloping algebra U(so(n, C)). The classical algebra U(so(n, C)) is 
generated by the elements I+I ,  i = 2 ,3 , .  . . , n that satisfy the relations 

~ i , i - ~ ~ k l , j  - z ~ i + ~ . i ~ i , i - ~ ~ i + l , i  + ~ ; + l , i ~ i . i - l  = -1i.i-I (2) 

(3) ~ i , i - l ~ i t ~ . ‘  - z ~ i , i - ~ ~ i t ~ . i ~ i , i - ~  + I i t l , i I & l  = -Ii+l, i  

[I;,i-l, Z,, j - l ]  = 0 li - j l  5 1. (4) 

2 

They follow from the well known commutation relations for the generators I i j  of the Lie 
algebra so(n, C) (Gel’fand and Tsetlin 1950). 

In our approach to the q-deformed orthogonal algebra, we define a q-deformation of the 
associative algebra U(so(n, C)) by deforming relations (2)-(4). The q-deformed relations 
are of the form 

I ~ , ~ - ~ I ; + ~ , ~  - a ~ i ~ ~ , i ~ i , ; - l h , i  + 1&~,~1i . i -1  = -I..  ,,(-I (5 )  

(6) 

[ I i , i -1 .  I , J - I ]  = O  [i - j l  > 1 (7) 

2 
~ i + ~ , i  - a ~ i , i - ~ ~ i + ~ , i ~ i , i - ~  + I i t l , i I ; , ; - l  = - I i + l , i  
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where 

a = q l l z  + q-'12 = (q - q-')/(ql/z - q - v z )  

and [.. .I denotes the usual commutator. Obviously; in the limit q + 1, formulae (5H7) 
give relations (2x4). We remark that relations (5) and (6) differ from the q-deformed 
Serre relations in the approach of Jimbo and Drinfeld to quantum orthogonal algebras by 
the appearance of a non-zero right-hand side and the possibility of reduction (1). Below, 
by the algebra Ui(so(n, C)), we mean the q-deformed algebra defined by formulae (947). 

As in the classical case, the q-algebras U;(so(3 ,@))  and Ui(so(4,C)) can also be 
described in terms of bilinear relations (q-commutators). In fact, defining the algebra 
U;(so(3, C)) by relations (5)-(7) results in only two generators 121 and 132. However, we 
can define the third element 131 according to the formula (Gavrilik and Klimyk 1994) 

13, = q'/4121132 - q-l'4132121. (8) 

Then, by the algebra U;(so(3.C)),  we mean the associative algebra generated by the 
elements 121, 132 and 131, which satisfy the relations 

It is clear that if the generators 121, 132 and 131 satisfy relations (9)-(ll), then the 
pair 121 and 132 satisfy. the trilinear relations (5) and (6). We remark that the algebra 
given by relations (9)-(11) coincides with the cyclically symmehic Fairlie algebra (Fairlie 
1990). For this reason, we call ow q-deformed algebra U;(so(n. C)) a generalization of 
the Fairlie algebra It was shown by Noumi et al (1994) that this algebra can be embedded 
into the Drinfeld-Jibo algebra Uq(sl(n,C)).  In particular, we have the embedding 
U;(so(3, C)) c Uq(s1(3, C)) which is important from the point of view of nuclear physics. 
It was shown by N o h  (1994) that the algebra U;(so(n, C)) allows us to define quantum 
analogues of the homogeneous spaces GL(n) /SO(n) .  

The q-deformed algebra Ui(so(4, C)) is generated by 1 2 1 ,  132 and 143. Moreover, for the 
first two generators, everything, concerning (ll(so(3, C)) above, is hue. Thus, the inclusion 

U;(S0(3, C)) C U;(s0(4, C)) 

takes place. The generators 121 and 143 mutually commute (see relation (7)) and the pair 
132, Z43 must, in turn, satisfy relations (5) and (6). Again, Ui(so(4, C)) can also be given 
in terms of bilinear q-commutators. Namely, we can add the element 131 from (8 )  and the 
elements 142 and 141 defined as 

142 = q1/4Z32Z43 - q-1'4143132 

4 1  = q"4z31143 -q-1'4143z31 = q'I4I21142 - q-i'4142121 

(12) 

(13) 

to the triplet of generators 121, 132 and 1.43. 
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Various real forms of our algebras Ui(so (n ,@) )  are obtained by introducing 
corresponding *-structures (antilinear antiautomorphisms). The compact real form Ui(so,) 
is defined by the *-structure 

I?. I . , - ]  = - I j ~ - l  i = 2 , 3  , _ _ _ ,  n . '  (14) 

The non-compact quantum algebras U;(so,.,), where r = n - p ,  are distinguished 
respectively by means of the *-structures (i < n) 

I?. 1.1-1 =-IQ-l i # P+ 1 = Ipt1.p.  (15) 

In this paper, we consider finite-dimensional representations of the algebra U ; ( S O ~ )  (they 
are also representations of Ui(so(4, C))) and infinite-dimensional representations of the 
non-compact algebra Ui(s0z.z). 

3. Representations of Fairlie's algebra 

Since Fairlie's algebra U:(s03) is a subalgebra of Ui(s04). we need finitedimensional 
irreducible representations of Ui(s03). As shown by Fairlie (1990), these representations are 
given by integral or half-integral non-negative numbers I .  We denote these representations 
by E. The carrier space of the representation Tj has the orthonormal basis (Im), m = 
I ,  1 - 1,. . . , - I ]  and the operators F(Zz1) and F ( I 3 2 )  act upon this basis as 

F(Izl)lm) = i[mllm) (16) 

Z(I3z)lm) =d(m)(II -ml~I+m+11~'~21m+1)-d(m-1)([I-m+11[l+ml)1'z~m-1) 

(17) 

where 

d ( m )  = ([mlIm t 11/[2m1[2m + 21)'/' 

and [ a ]  denotes a q-number defined by the formula 

[4 = (q"/2 - q - ~ / z ) / ( q ' / 2  - q- ' /z ) ,  

For the operator F(I31) ,  we have 

F(I3l) lm) = iq1'4(q"/2d(m)([l - m l [ l +  in + l ] ) l / z lm  + 1) 

+ q-"/'d(m - 1 ) ( [ 1  - m + 1 1 [ l +  m])1'21m - l)}. (18) 

Let us note that the operators T, (Zz j )  and F ( Z 3 2 )  satisfy conditions (14). The operator 
F ( I 3 t )  is not anti-Hermitian since, in the algebra U~(SCQ), we have I& # -231. 
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4. Representations of the algebra Uh(s04) in the Gel’fand-Tsetlin hasis 

As in the case of the Lie group SO(41, finite-dimensional irreducible representations T,, 
of the q-deformed algebra U ; ( S O ~ )  are given by two integral or half-integral numbers r 
and s such that r > Is] > 0 (Gavrilik 1993). Restriction of T,, on subalgebra Vi(so3) 
decomposes into the sum of the irreducible representations & of this subalgebra for which 
1 = IsI, Is1 + 1, . . . , r .  Uniting the bases of the subspaces of the irreducible representations 
?i of Ui(s03). we obtain the basis of the carrier space V,, of the representation T, of 
Vi(so4). Thus, the corresponding orthonormal basis of V,, consists of the vectors 

1I-m) I s l < l < r  m=-l , -Z+I  ,..., 1. 

The operator TrS(143) acrs upon these vectors by the formula (Gavrili 1993) 

where numbers in square brackets are q-numbers. The operators Trs(Zzl) and TIs(Z32) act 
upon the basis vectors by formulae (16) and (17). Formulae (16), (17) and (19) completely 
determine the representation T,$. 

5. Diagonalization of the operator TTa(&) 

Here we diagonalize the operator T,*(Z43) in order to use this result in the next section 
for obtaining representations T,, in the bases corresponding to restriction upon subalgebra 
Vi(soz)+Vi(soz). It is more convenient to deal with the operator L = -iTrs(I43) (i = a) 
as it is self-adjoint. Replacing the vectors [ I ,  m )  by ] I ,  m)’ = i-lll, m),  we obtain that L 
acts upon the vectors I I ,  m)’ by formula (19) in which the sign - of the third summand is 
replaced by + and the first summand is multipled by -i. 

The space V,, can be decomposed into the sum 

where V, is spanned by the vectors [ I ,  m )  with fixed m. Let us find the spectrum and the 
eigenvectors 

of the operator L on the subspace V , :  
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where [XI is a q-number. Formula (19) is symmetric with respect to permutation of s and 
m and to sign changes at m and s. Therefore, we may assume, without loss of generality, 
that s and m are positive and that s > m. 

Substituting expression (20) for Ix, m)'into (21) and acting on I[, m) by L, we find easily 
that vector (20) is an eigenvector of L with eigenvalue [XI if 9-r: satisfies the recurrence 
relation 

I I Kachurik and A U Klimyk 

[ u ~ n  + 2s + 111n + 11[n + s + m + 11[n + s - m + 11 
[r  + n + s + 2] - ' [n  + s + 1I2[2n + 2s + 1][2n + 2s + 31 

'1' ) P"+l(X) 

[r +n +s + l][r - n  -s + 1lIn +2sJ[nl[n + s +ml 
[n + s - m ] - ' [ n  + s]Z[Zn + 2s - 1][2n + 2s + 11 p"-l(x) 

(here, U = r - n - s, n = I - k) and the initial conditions Po(x) = 1, P _ ~ ( X )  = 0. 
Making, in (22). the substitution 

[n+2s] ! [n+s+m]![2n+b+ 11 
[nl![n+s -ml![r - n - s]![r + n  +s+ l]! 

P"(X) = - q c  

Comparing this formula with recurrence relation (7.5.2), from the book by Gasper and 
Rahman (1991) for q-Racah polynomials, 

(here, 4 ~ 3  is a basic hypergeometric function which can be found in Gasper and Rahman 
(1991)) at 

= qs+m 8 = - -,-I a = p = -  4 4 

After cumbersome transformations, we conclude that 

P,'(x, = Rn(!-dy); a, B, y,81q) 

where a, p, y and 6 are given by formulae (23) and 

x = (r - -s  -m) - 2y. 
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Thus, the polynomials P,(x)  from (22), normalized by the condition Po(x) = 1, are of the 
form 

P.(x) = N'/*R.(p(y); -4'. -4'. qstm, -q-'-'Iq) (24) 

[n +&]![n + s  +m]![2n +a + II[S - m]![r - s]![r + s +  I]! 
[n]![n + s - ml![r - n - s]![r + n + s + I]![&]![s +ml![2s + 11 

N =  

where x = (r - s - m) - 2y. The variable y takes the values 0, 1.2, , . , , r - s. Therefore, 
the spectwm of L on the subspace V, consists of the points 

[ r  -s -ml, [r  - s  - 2-m], [r -s - 4  -ml. .  . . , [ - ( r  - s )  -m]. (25) 

The corresponding eigenvectors are determined by formulae (20) and (24). The 
orthogonality relation for the polynomials P.(x) follows from the orthogonality of q-Racah 
polynomials (Gasper and Rahman 1991) and is of the form 

Here, W ( x )  is equal to the expression 

[4y + 2k - 2r][2y + 2k - 2r - 2]!![2y + 
[2y + 2k - 2rl[y + k - r - l]![y + s]![2y. 

. ![2r - 
!m]!![r - 
- - m - vl!  

I I ~  

- s - y]![y]! 

x [y+m]![k+y]![2+ l]!!([~]!)~[r -s]([2s]!![s -m]![k]![r + s +  l]!)-' 

wherek=s+m,In l !=[n] [n-  1]...[11 andin]!! =[n][n-21[n-4]. . .[1] or[2]. 
Formula (26) shows that vectors (20) are not normalized. The vectors 

I x ,  m) = w ( ~ ) ' / ~ I x ,  m)' 

are normal and, due to formula (21). we have 

Trs(143)Ix, m) = i[xllx. m). (27) 

Joining spectra (25) for all subspaces V,, we obtain the spectrum of the operator Tr3 
and, therefore, also of the operator Tr,(Z43). 

6. Representations T,, in the basis Iz, m) 

The operator cl(143) acts upon the basis vectors 1x.m) by formula (27). It is clear from 
formulae (16) and (20) that 

T,,(h)lx,m) = i[mllx,m). (28) 

Thus, to have representation T,, in the basis Ix, m ) ,  we must find the action formula for the 
operator T,*(I32) upon this basis. 
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Since 

with 4'!!,(x) = W ( ~ ) ' P f i - ~ ( x ) ,  then due to formula (17) we have 

To transform the second summand on the right-hand side of (30). we apply the 
transformation 

to the basic hypergeometric function 4p3 &om the expression for P;l,(x) (see Gasper and 
Rahman 1991). where N = I - s and 

(y = q l t r t l  p = -q(s-'tm-1)/2 = q ( ~ - r t m t x ) / Z  

6 = qa-1  ,J = -qst' = q ' t m t l ,  

Here (u;q)" = (l-a)(l-aq)(l-aq2)...(l-aq"-') . Now, we applythe samerecurence 
relation (7.2.14) of Gasper and Rahman (1991) with 

= q - ( r t m t l )  b = -q-s c = d = -4"' 

n = ( r  - s + m + x)/2 j = 1 + m  
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to ( [ l -  m + I][[ + m])l /zp~$) .  

d(m - l)d(x)(([r + 11 + Is + m - x - ll)([r + 11 + [s - m + x  + l l) l '~z 

Then, the second summand of the right-hand side of (30) takes the form 

x Cpl"_;'(x + I)P, m - 1) 

-d(m- l)d(x - l)[([r+ 11 -[s -m - x  + lJ)([r+ 11 - [ $ + m i x  - l])]'/' 
I=* 

x C P ~ ; ' ( X  - 1)11,m - 1). (32) 
I=S 

We substitute expressions (31) and (32) into (30) and take into account formula (29). 
As a result, we find that the operator Trr(132) acts upon the vectors Ix, m) as 

Trs(13z)IX. m)  = d(m)d(x - l)l([r + 11 + [s - m + x  - ll)([r + 11 + [s + m - x + 1])}'/' 

x [ x  - 1. m + 1) 
- d(m)d(x){([r + 11 - [s + m + x + l])([r + 11 - [s - m - x - l])]''z 

x Ix + 1,m + 1) 
+d(m - l)d(x - l)(([r+ 11 - [s - m  - x  + ll)([r+ l]-[s+m+x - 1])}'/' 

x Ix - 1, m - 1) 
- d ( m -  l ) d ( x ) [ ( [ r + l I + [ s + m - x - l ] ) ( [ r +  l ] + [ s - m + x +  1J))'p 

x l x + l , m - l ) .  (33) 
Now, we have completely determined the representations T,, of U;(SO~) with respect to the 
basis corresponding to reduction onto the subalgebra U;(SOZ) + U;(soz). 

7. Representations of the q-deformed algebra U;(soz.z) 

As in the case of representations of compact and non-compact real Lie groups, by making 
use of analytical continuation in parameters giving representations, we can obtain infinite- 
dimensional representations of the q-deformed algebra U;(soz,z) from the representations 
T,, of Ui(so4). In this way, we obtain the representations T:,, U E @, r E @, E E (0.11 of 
U;(so2,2) which act on the Hilbert spaces H, with the orthonormal basis 

Ix,m) x EZ m EZ x + m = c ( m d 2 ) .  

The operators T:z(Zzl) and Tir(Z43) act upon these basis vectors by formulae (27) and (28). 
For the operator T;r(Z32), we have 

T:r(13z)lx, m) = d(m)d(x - I){([u + 11+[5 -m + x  - lJ)([u + 11 + [ r + m  - x  + I]))'/' 
x Ix - 1, m + 1) - d(m)d(x) 

x {([U + 11 - [ r  + m + x  + ll)([u + 11 - [r - m - x - 11))'/~ 
x Ix + 1, m + 1) + d(m - l)d(x - 1) 

x {([U + 11 - [ r  - m -1 + ]])([U + 11 - [r + m + x  - 11)l'" 

x Ix - 1, m - 1) - d(m - I)d(x) 

x {([U + 11 + [r + m - x - II)([u + 11 + [ r  - m + x  + IJ)] ' /~ 

x Ix + 1 , m  - 1). (34) 
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To analyse the irreducibility of these representations, it is more convenient to transform 
formula (34) into the following form: 

x d(m)d(x - I)lx - 1, m + 1) 

x d(m - l)d(x)lx + 1, m - 1). 

In every summand here, there are two expressions of the form 

[U - r - m +xl/[(a - r - m t x)/Z]. 

(35) 

This expression is equal to 
q(m-r-n+x)/4 + q-(.r-r-mtz)/4 

Irreducibility of the representations Tir is studied in the same way as in the case of 
the q-deformed algebras U~(soz1) and Ui(so3,l) (Gavrilik and Klimyk 1994). Namely, 
invariant subspaces in the representation space appear because of the vanishing of some 
coefficients in formula (35). This studying leads to the following result: 

Theorem 1 .  
u + r $ E (mod2) and U - 5 $ E (mod2). 

A representation T& of the algebra Ui(s0z.z) is irreducible if and only if 

The reducible representations T& will be studied in a forthcoming paper. 

8. Conclusion 

We obtained spectra of the operators T,, (143)  of irreducible representations of the q-deformed 
algebra U ; ( S O ~ ) .  In contrast to the classical case, spectra are not equidistant or simple. 
Multiplicities of spectral points are calculated with the help of irreducible representations 

By making use of the spectra of the operators TIs(143), we derived an explicit formula 
for the operator TrS(l32) with respect to the basis Ix ,m) ,  corresponding to restriction 
onto the subalgebra U;(SDZ) + U ~ ( S O Z ) .  The other generating operators T,s(Z21) and 
Trs(143) are diagonal in this basis. Formulae for the operators Trr(Ij , j -~) ,  i = 2,3,4, 
determine the representation TrI in the basis I x ,  m), which differs from the Gel'fand-Tsetlin 
basis. Analytical continuation in parameters determining representations of Ul(s04) leads 
to irreducible representations of the q-deformed algebra Ui(soz,z) characterized by two 
complex numbers. 

of the subalgebra Ui(s03). 
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